Capítulo 15

Análise de placas-sanduíche

Uma primeira característica importante sobre o comportamento mecânico das placas-sanduíche é que elas não podem, em geral, ser consideradas placas finas. Em vez disso, elas são classificadas como placas semi-espessas ou espessas dependendo da relação l/H, onde l é um comprimento característico medido sobre a superfície, e H, sua espessura. Da mesma forma que em vigas, o efeito de grandes espessuras é que as distribuições de tensões cisalhantes transversais τ_{xz} e τ_{yz} não podem ser simplesmente ignoradas na análise. Um dos efeitos do cisalhamento transversal pode ser visto quando se considera qualitativamente a deflexão transversal de uma placa-sanduíche, como visto na Figura 15.1. Ali nota-se que, se a placa for analisada como se fosse delgada usando a teoria clássica de laminação, TCL, isto é, considerando τ_{xz} e τ_{yz} nulos, a curva de deflexão obtida seria diferente daquela obtida quando se considera o cisalhamento transversal. Esse cisalhamento tem o efeito de aumentar as deflexões provenientes do momento. Quanto menor for a relação l/H, mais pronunciado será esse efeito.

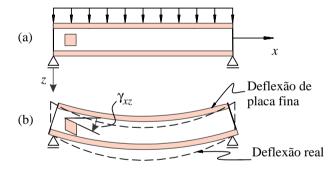


Figura 15.1: Comparação qualitativa entre as deflexões obtidas em placas-sanduíche usando teorias de placa fina e semi-espessa.

O fato de que em geral as placas-sanduíche têm aspectos l/H baixos é um dos fatores que tornam necessária a inclusão do cisalhamento na análise. Existe, porém, ao menos um outro fator, igualmente importante: os materiais usados como núcleo são selecionados para ser os mais leves possíveis e, como consequência, têm resistências ao cisalhamento muito menores que os materiais usados nas faces, tornando importante a correta determinação das tensões cisalhames transversais. A análise do laminado deve então garantir a integridade do núcleo quanto ao cisalhamento.

Na próxima seção apresentaremos a teoria de primeira ordem adaptada ao uso em painéis-sanduíche. Em seções subsequentes, apresentaremos uma solução analítica clássica obtida para um caso particular usando a teoria de elasticidade tridimensional.

15.1 Teoria de primeira ordem para placas-sanduíche

Consideremos inicialmente a placa-sanduíche com as propriedades geométricas mostradas na Figura 15.2. As faces inferior e superior têm espessuras h_1 e h_2 , o núcleo tem espessura H_n , a espessura total

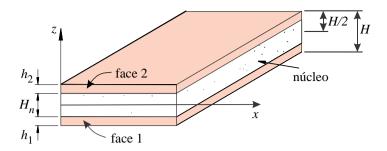


Figura 15.2: Propriedades geométricas de um painel-sanduíche.

é H. O plano x-y é posicionado sobre a superfície de média. Whitney [213] lista uma série de hipóteses feitas na análise aproximada de placas-sanduíche, a qual adaptamos como segue.

- 1 As faces podem ser homogêneo-isotrópicas ou compostas por lâminas ortotrópicas angulares de espessuras constantes h_1 e h_2 .
- 2 O núcleo é ortotrópico, com as direções principais alinhadas aos eixos x-y. Sua espessura é constante e muito maior que a das faces, isto é, $h_1 << H_n$ e $h_2 << H_n$.
- 3 As tensões σ_x , σ_y e τ_{xy} no núcleo são consideradas desprezíveis por causa do baixo módulo de elasticidade dos materiais usuais em núcleos.
- 4 O deslocamento transversal w é considerado independente de z, isto é, ε_z é desprezado.
- 5 As tensões cisalhantes transversais τ_{xz} e τ_{yz} nas faces são supostas desprezíveis, mas não no núcleo.
- 6 Hipóteses de teoria linear:
 - os deslocamentos transversais são pequenos comparados à espessura da placa, tipicamente $w \leq H/2$;
 - as deformações coplanares são pequenas comparadas à unidade, tipicamente $\varepsilon \leq 2\%$;
 - o núcleo e as faces obedecem à Lei de Hooke.

7 Hipóteses cinemáticas:

- a. os deslocamentos coplanares no núcleo u_n e v_n supostamente variam de forma linear com z, porém as seções normais à superfície de referência no núcleo não são restringidas a permanecerem normais a esta, caracterizando uma teoria de primeira ordem;
- b. os deslocamentos coplanares nas faces, u_1 , v_1 , u_2 e v_2 , são considerados uniformes ao longo da espessura de cada face. Isso está baseado na hipótese 2, de que h_1 , $h_2 << H_n$. Estas duas hipóteses são visualizadas na Figura 15.3.

As únicas hipóteses que diferenciam esta teoria das teorias de baixa ordem usadas para placas semi-espessas são as hipóteses 3 e 7. Essas hipóteses também são as mesmas usadas para vigas-sanduíche nas Seções 10.1.1–10.1.4, página 268. Ali são avaliados os efeitos das diversas hipóteses sobre a precisão da estimativa da rigidez flexural do sanduíche. Nota-se que temos aqui o chamado estado antiplano no núcleo, como definido em (10.20).

A hipótese 7 pode ser representada da seguinte forma. Os deslocamentos coplanares num ponto arbitrário do **núcleo** são

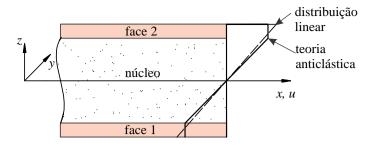


Figura 15.3: Duas hipóteses cinemáticas para os deslocamentos coplanares em sanduíches de faces delgadas: hipótese de distribuição linear e estado antiplano.

e num ponto qualquer das faces 1 e 2 os deslocamentos são dados por

enquanto o deslocamento transversal é obtido pela hipótese 4 como:

$$w = w(x, y). (15.2)$$

Então o comportamento da placa-sanduíche foi modelado por cinco funções de deslocamento: deslocamentos de membrana da superfície média $u^{o}(x,y)$ e $v^{o}(x,y)$, o deslocamento transversal w(x,y) e as rotações da normal em relação aos eixos y e x, respectivamente: $\psi_{x}(x,y)$ e $\psi_{y}(x,y)$.

As deformações são, portanto:

Cisalhamento transversal no núcleo
$$\begin{cases} \gamma_{xz}^n = \psi_x + w_{,x} \\ \gamma_{yz}^n = \psi_y + w_{,y} \end{cases}$$
 (15.3)

Extensão na face 1
$$\begin{cases} \varepsilon_x^{f_1} = \varepsilon_x^{o} - \frac{1}{2} (H - h_1) \kappa_x \\ \varepsilon_x^{f_1} = \varepsilon_y^{o} - \frac{1}{2} (H - h_1) \kappa_y \\ \gamma_{xy}^{f_1} = \gamma_{xy}^{o} - \frac{1}{2} (H - h_1) \kappa_{xy} \end{cases}$$
(15.4)

Extensão na face 2
$$\begin{cases} \varepsilon_x^{f_2} = \varepsilon_x^{o} + \frac{1}{2} (H - h_2) \kappa_x \\ \varepsilon_x^{f_2} = \varepsilon_y^{o} + \frac{1}{2} (H - h_2) \kappa_y \\ \gamma_{xy}^{f_2} = \gamma_{xy}^{o} + \frac{1}{2} (H - h_2) \kappa_{xy} \end{cases}$$
(15.5)

Os índices f_1 , f_2 e n se referem às faces 1, 2 e ao núcleo, respectivamente. As deformações de membrana ε_x^{o} , ε_y^{o} e γ_{xy}^{o} e as curvaturas κ_x , κ_y e κ_{xy} são definidas nas equações (11.54), página 304.

A princípio, os esforços normais e de momento são relacionados às tensões da mesma forma que na TCL, pelas eqs.(6.12), página 128. Porém, graças à hipótese 3, em que as componentes coplanares σ_x, σ_y e τ_{xy} são consideradas nulas no núcleo, os esforços na placa tornam-se:

$$k_{1}G_{13}H_{n}\left(\frac{\partial\psi_{x}}{\partial x} + \frac{\partial^{2}w}{\partial x^{2}}\right) + k_{1}G_{23}H_{n}\left(\frac{\partial\psi_{y}}{\partial y} + \frac{\partial^{2}w}{\partial y^{2}}\right) +$$

$$\left[N_{x}\frac{\partial^{2}w}{\partial x^{2}} + 2N_{xy}\frac{\partial^{2}w}{\partial x\partial y} + N_{y}\frac{\partial^{2}w}{\partial y^{2}}\right] + q(x,y) = \rho_{o}\frac{\partial^{2}w}{\partial t^{2}},$$

$$F_{11}\frac{\partial^{2}u^{o}}{\partial x^{2}} + 2F_{16}\frac{\partial^{2}u^{o}}{\partial x\partial y} + F_{66}\frac{\partial^{2}u^{o}}{\partial y^{2}} + F_{16}\frac{\partial^{2}v^{o}}{\partial x^{2}} + (F_{12} + F_{66})\frac{\partial^{2}v^{o}}{\partial x\partial y} + F_{16}\frac{\partial^{2}v^{o}}{\partial x^{2}} + 2D_{16}\frac{\partial^{2}\psi_{x}}{\partial x^{2}} + D_{16}\frac{\partial^{2}\psi_{y}}{\partial x^{2}} + D_{16}\frac{\partial^{2}\psi_{y}}{\partial x^{2}} + (D_{12} + D_{66})\frac{\partial^{2}\psi_{y}}{\partial x\partial y} + D_{26}\frac{\partial^{2}\psi_{y}}{\partial y^{2}} - k_{1}G_{13}H_{n}\left(\psi_{x} + \frac{\partial w}{\partial x}\right) = 0,$$

$$F_{16}\frac{\partial^{2}u^{o}}{\partial x^{2}} + (F_{12} + F_{66})\frac{\partial^{2}u^{o}}{\partial x\partial y} + F_{26}\frac{\partial^{2}u^{o}}{\partial y^{2}} + F_{66}\frac{\partial^{2}u^{o}}{\partial x^{2}} + 2F_{26}\frac{\partial^{2}v^{o}}{\partial x\partial y} + F_{26}\frac{\partial^{2}v^{o}}{\partial x^{2}} + F_{26}\frac{\partial^{2}v^{o}}{\partial x^{2}} + 2F_{26}\frac{\partial^{2}v^{o}}{\partial x\partial y} + F_{26}\frac{\partial^{2}v^{o}}{\partial x^{2}} + F_{26}\frac{\partial^{2}v^{o}}{\partial x^{2}} + 2F_{26}\frac{\partial^{2}v^{o}}{\partial x\partial y} + F_{26}\frac{\partial^{2}v^{o}}{\partial x^{2}} + F_{26}\frac{\partial^{2}v^{o}}{\partial x^$$

As duas equações (15.19) são as mesmas de um laminado semi-espesso de primeira ordem, com **A** e **B** definidos por (15.13). Para o conjunto completo, (15.19)–(15.20), as possíveis condições de contorno são também as mesmas dos laminados semi-espessos, as eqs.(11.53), página 304.

Apresentamos na próxima seção a solução analítica para dois casos particulares usando esta teoria aproximada. Subsequentemente apresentamos a solução obtida pela teoria da elasticidade tridimensional, de forma a estimar a qualidade dos resultados obtidos.

15.2 Flexão cilíndrica de sanduíche – $1^{\underline{a}}$ ordem

Consideramos a flexão cilíndrica de um laminado de faces delgadas, simplesmente apoiado, sob carga uniformemente distribuída, com largura e eixos como indicado na Figura 15.4. Este problema é análogo àquele visto nas seções 13.2.2 e 13.2.3 para laminados. Estamos buscando uma solução de primeira ordem para o problema. Desta forma se poderia usar a solução já obtida na Seção 13.2.2, porém no caso do sanduíche pode-se usar as simplificações indicadas na Seção 15.1. Além daquelas, para facilitar ainda mais a solução, considera-se que:

- as faces são idênticas, de forma que $\mathbf{B} = \mathbf{F} = \mathbf{0}$ em (15.13) e a placa se torna simétrica, da mesma forma que a matriz de rigidez em (15.11);
- as faces são ortotrópicas, de forma que $A_{16} = A_{26} = D_{16} = D_{26} = 0$.

Como $\mathbf{B} = \mathbf{F} = \mathbf{0}$, observa-se que as equações do movimento (15.19) e (15.20) são desacopladas, e as últimas envolvem apenas flexão. Desta forma as equações (13.18), página 352, são válidas na caracterização do problema de flexão cilíndrica. Como a placa é infinita na direção y e todos os parâmetros dependem apenas de x, fazemos em todas as equações $\partial \left(\bullet \right) / \partial y = 0$, de forma que as equações de movimento (15.20) se reduzem a apenas duas equações, em termos apenas do deslocamento transversal e da rotação da norma w e ψ_x :

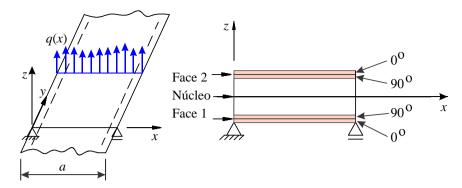


Figura 15.4: Placa-sanduíche semi-infinita biapoiada simétrica, de duas faces ortotrópicas, sob flexão cilíndrica e carga distribuída.

Estas equações permitem a solução de problemas de flexão estática, de flambagem sob carga coplanar e de vibrações livres. Consideremos aqui o caso de flexão estática linear sob uma carga constituída por um único harmônico, dado por:

$$q(x) = q_n \operatorname{sen} p_n x, \tag{15.22}$$

com q_n constante e $p_n = n\pi/a$, com n = 1, 2, 3, ..., e $N_x^0 = \partial^2 w/\partial t^2 = 0$ em (15.21). Considerando as bordas simplesmente apoiadas, temos:

$$w(x) = 0,$$

 $M_x(x) = -D_{11}\psi'_x(x) = 0,$ para $x = 0$ e $x = a$. (15.23)

 $(\bullet)'$ indica derivação em x. O procedimento apresentado aqui pode ser usado também para obter a solução ao **carregamento constante**

$$q(x) = q_0 = const. (15.24)$$

para a qual a solução será mostrada ao final da seção. Consideramos primeiramente o carregamento da eq.(15.22). A solução é obtida, num primeiro passo, integrando a segunda das equações (15.21):

$$k_1 G_{13} H_n \left(\psi_x + w' \right) = \frac{q_n}{p_n} \cos p_n x + C_1,$$
 (15.25)

onde C_1 é uma constante a ser determinada pelas condições de contorno. Substituindo o termo entre parênteses desta equação na primeira das equações (15.21), temos

$$D_{11}\psi_x'' = \frac{q_n}{p_n} \cos p_n x + C_1,$$

que integrada duas vezes resulta em:

$$D_{11}\psi_x = -\frac{q_n}{p_n^3}\cos p_n x + \frac{C_1 x^2}{2} + C_2 x + C_3.$$
 (15.26)

Aplicando a segunda condição de contorno (15.23), obtemos $C_1 = C_2 = 0$. Levando ψ_x de (15.26) a (15.25) e integrando, temos

$$w(x) = \frac{q_n}{p_n^2} \left(\frac{1}{k_1 G_{13} H_n} + \frac{1}{p_n^2 D_{11}} \right) \operatorname{sen} p_n x - \frac{C_3 x}{D_{11}} + C_4.$$
 (15.27)

Aplicando a primeira condição de contorno (15.23), obtemos $C_3 = C_4 = 0$, o que produz a **solução** para o carregamento senoidal (15.22):

A tensão normal nas faces é obtida de (15.29) e (15.30), com $Q_{11} = E/(1-\nu^2)$. Na face superior a tensão é dada por:

$$\sigma_x^{f_2}(x) = \frac{q_0 \left(ax - x^2\right) H_n/h}{4H_n^2 \left(1 + \frac{h}{H_n}\right)^2}$$
(15.43)

O valor máximo ocorre em x = a/2:

$$\sigma_{x \max}^{f_2}(x) = \frac{q_0 a^2 H_n / h}{16H_n^2 \left(1 + \frac{h}{H_n}\right)^2}$$
(15.44)

A Figura 15.6, assim como a Tabela 15.1, mostra a variação das tensões normal e cisalhante com o aspecto da placa H_n/h , dados pelas eqs.(15.42) e (15.44).

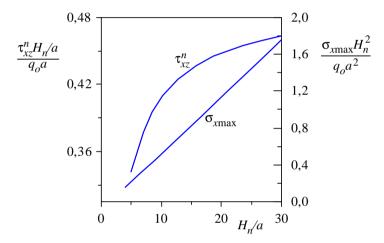


Figura 15.6: Tensões normal e cisalhante transversal obtidas por (15.42) para o núcleo de um sanduíche de faces idênticas e isotrópicas de espessuras h, sob carga distribuída uniforme.

A deflexão máxima no centro da placa é dada pela eq. (15.29) aplicada a x = a/2, donde resulta

$$w_{\text{max}} = w_f + w_c, \qquad w_f = \frac{5q_0 a^4 \left(1 - \nu^2\right)}{384h^3 \left(1 + \frac{H_n}{h}\right)^2 E}, \qquad w_c = \frac{q_0 a^2}{8k_1 h G_{13} H_n/h}$$
(15.45)

Aqui, w_f é a parcela de deflexão sem efeitos de cisalhamento, e w_c é a deflexão adicional proveniente do cisalhamento transversal. Os valores mostrados na Tabela 15.1 são obtidos para o fator de cisalhamento $k_1 = 5/6$ e coeficiente de Poisson $\nu = 0, 3$. G_{13} e E são o módulo do núcleo e da face, respectivamente.

15.3 Soluções exatas para laminados e sanduíches retangulares

Na seção 13.2.4, página 357, tínhamos apresentado a solução exata obtida por Pagano [149] para flexão cilíndrica de placas ortotrópicas, e nas seções seguintes, mostramos as comparações com as soluções obtidas por teorias simplificadas, como a TCL e a de primeira ordem. Na presente seção apresentamos uma outra solução exata, também obtida por Pagano [148], como uma extensão da solução anterior, agora aplicada a placas finitas ortotrópicas retangulares, sanduíche ou não. O objetivo desta

¹Srinivas e Rao, [188], [189], apresentam também soluções analíticas na forma de séries, pela teoria da elasticidade, para o problema de placas ortotrópicas laminadas simplesmente apoiadas, não só para o problema de flexão estática mas

seção é o de mostrar a aplicação dessa solução a placas-sanduíche e permitir comparações com os resultados obtidos por teorias simplificadas, como a de primeira ordem vista na seção seguinte. (O leitor não interessado nos detalhes da solução exata pode passar diretamente à Seção 15.4 para a análise comparativa dos resultados, sem prejuízo da continuidade do texto.)

Tabela 15.1: Deflexão máxima, tensões transversais normais e cisalhantes máximas num sanduíche de faces idênticas delgadas isotrópicas sob carga distribuída uniforme q_0 em flexão cilíndrica. H_n = espessura do núcleo, h = espessura de uma face, a = largura da placa.

1		,	6 I		
$\frac{H_n}{h}$	$\frac{\sigma_{x\max}H_n^2}{q_0a^2}$	$\frac{\tau_{xz}^n H_n}{q_0 a}$	$\frac{w_f E H_n^3}{q_0 a^4}$	$\frac{w_c G_{13} H_n}{q_0 a^2}$	
5	0,4217	0,347	0,0411	0,15	
10	0,5165	0,413	0,9792	0,15	
15	0,8240	0,439	0,1562	0,15	
20	1,1338	0,454	0,2149	0,15	
25	1,4446	0,462	0,2739	0,15	
35	2,0677	0,473	0,3920	0,15	

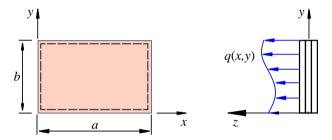


Figura 15.7: Eixos e dimensões na placa.

Pagano [148] considerou um laminado de lados $a \times b$ com os eixos x-y-z como na Figura 15.7, composto por N lâminas ortotrópicas com eixos de simetria de material nas direções x-y-z. As bordas são simplesmente apoiadas, livres para o deslocamento coplanar normal à borda. O carregamento é distribuído, aplicado na superfície superior como $\sigma_z(x,y,H/2) = q(x,y)$, e a face inferior é livre de tensões. Em síntese, as condições de contorno são as seguintes.

Nas superfícies superior e inferior:

$$\sigma_z(x, y, H/2) = q(x, y),$$

$$\sigma_z(x, y, -H/2) = \tau_{xz}(x, y, \pm H/2) = \tau_{yz}(x, y, \pm H/2) = 0;$$
(15.46)

e nas bordas simplesmente apoiadas,

$$\sigma_x(x, y, z) = v(x, y, z) = w(x, y, z) = 0$$
 em $x = 0$, e $x = a$,
 $\sigma_y(x, y, z) = u(x, y, z) = w(x, y, z) = 0$ em $y = 0$, e $y = b$. (15.47)

Cada lâmina é ortotrópica com as direções principais alinhadas aos eixos x-y-z, de forma que a matriz de rigidez \mathbb{C}^1 nas direções principais da lâmina é obtida pela eq.(4.11), página 76. Em seguida \mathbb{C}^1 é rotacionada para \mathbb{C}^x nas direções x-y-z usando (4.77)–(4.79). No presente caso os ângulos são ou 0° ou 90° , o que simplifica os cálculos. Nos desenvolvimentos seguintes usaremos apenas C^k_{ij} em lugar de C^{xk}_{ij} para simplificar a notação.

Substituindo as relações deformação-deslocamento e as relações constitutivas nas equações diferenciais de equilíbrio, chega-se às equações de equilíbrio, em termos dos deslocamentos u(x, y, z), v(x, y, z)

15.3.1 Lâminas transversamente isotrópicas

Para os chamados materiais transversamente isotrópicos, Pagano [148] mostra que $\mathcal{H}^k < 0$. Esses laminados ocorrem no caso das lâminas reforçadas por fibras unidirecionais. Para o caso em que as fibras estão orientadas na direção y (o plano de isotropia é 1-3), os termos da matriz de rigidez \mathbf{C}^1 são restritos da seguinte forma (ver Seção 4.1):

$$C_{11}^k = C_{33}^k, C_{12}^k = C_{23}^k, C_{44}^k = C_{66}^k, 2C_{55}^k = C_{11}^k - C_{13}^k, e$$
 (15.72)

$$\mathcal{H}^{k} = \frac{\left(C_{11}^{k}C_{22}^{k} - \left(C_{12}^{k}\right)^{2}\right)p_{n}^{12}}{108\left(C_{11}^{k}\right)^{4}\left(C_{44}^{k}\right)^{2}\left(C_{11}^{k} - C_{13}^{k}\right)^{4}}\left[\left(2C_{44}^{k} + C_{12}^{k}\right)^{2} - C_{11}^{k}C_{22}^{k}\right] \times \left\{4C_{11}^{k}\left(C_{44}^{k}\right)^{2} + \left(C_{11}^{k} - C_{13}^{k}\right)\left[2C_{12}^{k}\left(C_{12}^{k} + 2C_{44}^{k}\right) - C_{22}^{k}\left(C_{11}^{k} + C_{13}^{k}\right)\right]\right\}^{2}.$$

$$(15.73)$$

Caso as fibras estejam orientadas na direção x (a direção principal 1 da lâmina é paralela ao eixo x),

$$C_{22}^k = C_{33}^k, C_{12}^k = C_{13}^k, C_{55}^k = C_{66}^k, 2C_{44}^k = C_{22}^k - C_{23}^k, (15.74)$$

e \mathcal{H}^k pode ser obtido simplesmente alternando os índices $44 \leftrightarrow 55$ e $1 \leftrightarrow 2$ em (15.73):

$$\mathcal{H}^{k} = \frac{\left(C_{11}^{k}C_{22}^{k} - \left(C_{12}^{k}\right)^{2}\right)p_{n}^{12}}{108\left(C_{22}^{k}\right)^{4}\left(C_{55}^{k}\right)^{2}\left(C_{22}^{k} - C_{23}^{k}\right)^{4}} \left[\left(2C_{55}^{k} + C_{12}^{k}\right)^{2} - C_{11}^{k}C_{22}^{k}\right] \times \left\{4C_{22}^{k}\left(C_{55}^{k}\right)^{2} + \left(C_{22}^{k} - C_{23}^{k}\right)\left[2C_{12}^{k}\left(C_{12}^{k} + 2C_{55}^{k}\right) - C_{11}^{k}\left(C_{22}^{k} + C_{23}^{k}\right)\right]\right\}^{2}. \quad (15.75)$$

Finalmente, caso as fibras estejam orientadas na direção z tem-se:

$$C_{11}^k = C_{22}^k, C_{13}^k = C_{23}^k, C_{44}^k = C_{55}^k, 2C_{66}^k = C_{11}^k - C_{12}^k, (15.76)$$

e \mathcal{H}^k é obtido simplesmente alternando os índices $55 \leftrightarrow 66$ e $2 \leftrightarrow 3$ em (15.73):

$$\mathcal{H}^{k} = \frac{\left(C_{11}^{k}C_{33}^{k}C_{13}^{k_{2}}\right)p_{n}^{12}}{108\left(C_{11}^{k}\right)^{4}\left(C_{44}^{k}\right)^{2}\left(C_{11}^{k}-C_{12}^{k}\right)^{4}}\left[\left(2C_{44}^{k}+C_{13}^{k}\right)^{2}-C_{11}^{k}C_{33}^{k}\right]$$

$$\left\{4C_{11}^{k}\left(C_{44}^{k}\right)^{2}+\left(C_{11}^{k}-C_{12}^{k}\right)\left[2C_{13}^{k}\left(C_{13}^{k}+2C_{44}^{k}\right)-C_{33}^{k}\left(C_{11}^{k}+C_{12}^{k}\right)\right]\right\}^{2}. \quad (15.77)$$

Este último caso pode representar, por exemplo, o núcleo de uma placa-sanduíche formado por madeira com suas fibras alinhadas na direção transversal 3 (direção z do sanduíche).

15.3.2 Resultados numéricos para sanduíche retangular

Pagano [148] apresenta resultados numéricos para quatro situações: (a) um laminado quadrado cruzado de duas lâminas; (b) um laminado simétrico de três lâminas de idênticas espessuras, com lados a=b e (c) b=3a; (d) uma placa-sanduíche com a=b. Os resultados obtidos nos três primeiros casos de laminados mostram o mesmo comportamento dos laminados sob flexão cilíndrica comentada na seção 13.2.4 e portanto não são mostrados aqui. Em seguida comentaremos os resultados para a placa-sanduíche.

Pagano considerou uma placa quadrada a=b, com m=n=1 em (15.49). Isto implica um carregamento q(x,y) na forma de $\sigma_z(x,y,+H/2)$ mostrado em (15.69), isto é, do tipo (15.71). A espessura de cada face é h=H/10. As propriedades usadas têm valores:²

²Excepcionalmente usaremos aqui valores em unidades do "sistema" britânico, uma vez que estas foram as unidades

núcleo:
$$\begin{vmatrix}
E_{1n} = E_{2n} = 0,04 \cdot 10^6 \text{ psi} \\
G_{13n} = G_{23n} = 0,06 \cdot 10^6 \text{ psi} \\
\nu_{12n} = \nu_{31n} = \nu_{32n} = 0,25.
\end{vmatrix}
\begin{vmatrix}
E_{3n} = 0,5 \cdot 10^6 \text{ psi} \\
G_{12n} = 0,016 \cdot 10^6 \text{ psi}
\end{vmatrix}$$
(15.79)

Note que as faces não são transversamente isotrópicas $(G_{23} \neq E_2/2(1+\nu_{23}))$. O nucleo é isotrópico, com $G_{12n} = E_{1n}/2(1+\nu_{12n})$ e $\nu_{13n} = \nu_{23n} = \nu_{31n}E_{1n}/E_{3n} = 0.02$. As soluções obtidas por Pagano estão mostradas na Figura 15.9, na curva de soluções exatas dos deslocamentos máximos e nas tensões máximas mostradas na Tabela 15.2.

Tabela 15.2: Tensões máximas numa placa-sanduíche quadrada. Obs.: (1) valor em z = 0,44H. (2) valor em z = 0,08H.

a/H	$\overline{\sigma}_x$	$\overline{\sigma}_x^i$	$\overline{ au}_{xy}$	$\overline{\sigma}_y$	$\overline{ au}_{xz}$	$\overline{ au}_{yz}$				
Ponto:	$\left(\frac{a}{2}; \frac{b}{2}; \pm \frac{H}{2}\right)$	$\left(\frac{a}{2}; \frac{b}{2}; \pm 0, 4H\right)$	$\left(0;0;\pm\frac{H}{2}\right)$	$\left(\frac{a}{2}; \frac{b}{2}; \frac{H}{2}\right)$	$\left(0;\frac{b}{2};0\right)$	$\left(\frac{a}{2};0;0\right)$				
Solução de elasticidade (cf. Pagano [148])										
2	+3,278	-2,220	-0,2403	+0,4517	0,185	0,1399				
	-2,653	+1,668	+0,2338	-0,3919	0,320(1)	0,1402(2)				
4	+1,556	-0,233	-0,1437	+0,2595						
	-1,512	+0,196	+0,1481	-0,2533	0,239	0,1072				
10	+1,153	+0,628	-0,0707	+0,1104						
	-1,152	-0,629	+0,0717	-0,1099	0,300	0,0527				
20	$\pm 1,110$	$\pm 0,810$	$\pm 0,0511$	$\pm 0,0700$	0,317	0,0361				
50	$\pm 1,099$	$\pm 0,867$	$\pm 0,0446$	$\pm 0,0569$	0,323	0,0306				
100	$\pm 1,098$	$\pm 0,875$	$\pm 0,0437$	$\pm 0,0550$	0,324	0,0297				
	TCL									
	$\pm 1,097$	$\pm 0,878$	$\pm 0,0433$	$\pm 0,0543$	0,324	0,0295				

As tensões indicadas na Tabela 15.2 são normalizadas da seguinte forma:

$$(\overline{\sigma}_x; \overline{\sigma}_y; \overline{\tau}_{xy}) = \frac{1}{q_{11} (a/H)^2} (\sigma_x; \sigma_y; \tau_{xy}), \qquad (\overline{\tau}_{xz} \overline{\tau}_{yz}) = \frac{1}{q_{11} (a/H)} (\tau_{xz}; \tau_{yz}), \qquad (15.80)$$

 q_{11} é a amplitude de carga distribuída conforme (15.71).

As tensões na placa mostradas na Tabela 15.2 ocorrem nas posições indicadas na Figura 15.8. As tensões σ_x^i na segunda coluna ocorrem no material da face, logo na interface. A variação de σ_x ao longo da espessura é abrupta, principalmente para os casos de placa espessa, como pode ser visto pela comparação dos valores entre as duas primeiras colunas. Esse comportamento é o mesmo de outros laminados espessos e é semelhante ao da curva de σ_x mostrada na Figura 13.9, página 361, para flexão cilíndrica, obtida por esta mesma teoria. Entretanto, já a partir de aspectos como $a/H \gtrsim 10$, o uso da TCL para as tensões passa a ser aceitável, embora para $a/H \lesssim 20$ os deslocamentos são em geral ainda inaceitáveis.

Nas últimas duas colunas aparecem os valores de τ_{xz} e τ_{yz} . Para grandes espessuras, $a/H \lesssim 10$, a distribuição dessas tensões ao longo da espessura é semelhante à mostrada na Figura 13.11, página 362, isto é, os valores máximos não ocorrem no centro, z=0, mas em algum lugar ao longo da espessura

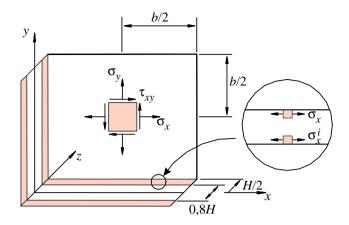


Figura 15.8: Localização dos pontos das tensões obtidas na Tabela 15.2.

da face. Quando isto ocorre aparecem na tabela dois valores para τ_{xz} ou τ_{yz} , sendo o primeiro o valor em z=0 e o segundo o valor máximo que ocorre na coordenada z indicada entre parênteses.

15.4 Solução de primeira ordem para sanduíche retangular

O problema de flexão de uma placa-sanduíche retangular de faces delgadas sob carga distribuída tem sua solução analítica pela teoria da elasticidade tridimensional descrita na Seção 15.3. Aqui apresentaremos a solução deste problema pela teoria de primeira ordem descrita na Seção 15.2 e em seguida compararemos as soluções com os valores obtidos pela TCL e pela solução exata.

Considere uma placa-sanduíche retangular submetida a um carregamento transversal definido por

$$q = q_0 \operatorname{sen} \frac{\pi x}{a} \operatorname{sen} \frac{\pi y}{b}. \tag{15.81}$$

Adotando a solução apresentada por Whitney [213], em que as faces são idênticas e ortotrópicas, $D_{16} = D_{26} = 0$ e $F_{ij} = 0$, as equações de movimento (15.20) se reduzem, no caso estático, ao seguinte:

$$\Rightarrow D_{11} \frac{\partial^{2} \psi_{x}}{\partial x^{2}} + D_{66} \frac{\partial^{2} \psi_{x}}{\partial y^{2}} + (D_{12} + D_{66}) \frac{\partial^{2} \psi_{y}}{\partial x \partial y} - k_{1} G_{13} H_{n} \left(\psi_{x} + \frac{\partial w}{\partial x} \right) = 0,$$

$$\Rightarrow (D_{12} + D_{66}) \frac{\partial^{2} \psi_{x}}{\partial x \partial y} + D_{66} \frac{\partial^{2} \psi_{y}}{\partial x^{2}} + D_{22} \frac{\partial^{2} \psi_{y}}{\partial y^{2}} - k_{2} G_{23} H_{n} \left(\psi_{y} + \frac{\partial w}{\partial y} \right) = 0,$$

$$\Rightarrow k_{1} G_{13} H_{n} \frac{\partial}{\partial x} \left(\psi_{x} + \frac{\partial w}{\partial x} \right) + k_{2} G_{23} H_{n} \frac{\partial}{\partial y} \left(\psi_{y} + \frac{\partial w}{\partial y} \right) + q(x, y) = 0.$$

$$(15.82)$$

As bordas da placa são simplesmente apoiadas do seguinte tipo:

para
$$x = 0$$
 ou $x = a$, com $\forall y$
$$\rightarrow \begin{cases} w(x, y) = 0, \\ \psi_y(x, y) = 0, \\ M_x(x, y) = D_{11} \frac{\partial \psi_x}{\partial x} + D_{12} \frac{\partial \psi_y}{\partial y} = 0, \end{cases}$$

e para
$$y = 0$$
 ou $y = b$, com $\forall x$
$$\Rightarrow \begin{cases} w(x, y) = 0, \\ \psi_x(x, y) = 0, \\ M_y(x, y) = D_{12} \frac{\partial \psi_x}{\partial x} + D_{22} \frac{\partial \psi_y}{\partial y} = 0. \end{cases}$$
 (15.83)

A solução do problema de valor no contorno que satisfaz as condições no domínio (15.82) e no contorno (15.83) são